VALUE DISTRIBUTION AND UNIQUENESS OF CERTAIN TYPES OF DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE AND RAJESHWARI S.

ABSTRACT. In this paper, we investigate the value distribution and uniqueness problem of q-shift difference polynomials sharing a small function. With the notion of weakly weighted sharing and relaxed weighted sharing we extend some well known previous results.

1. Introduction, Definitions and Results

By a meromorphic function we shall always mean a meromorphic function in the complex plane. Let k be a positive integer or infinity and $a \in C \cup \{\infty\}$. Set $E(a, f) = \{z : f(z) - a = 0\},$ where a zero point with multiplicity k is counted k times in the set. If these zeros points are only counted once, then we denote the set by $\overline{E}(a,f)$. Let f and g be two nonconstant meromorphic functions. If E(a,f)=E(a,g), then we say that f and g share the value a CM; if $\overline{E}(a,f) = \overline{E}(a,g)$, then we say that f and g share the value a IM. We denote by $E_{k}(a, f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicity. Also we denote by $\overline{E}_{k}(a, f)$ the set of distinct a-points of f with multiplicities not greater than k. It is assumed that the reader is familiar with the notations of Nevanlinna theory such as $T(r, f), m(r, f), N(r, f), \overline{N}(r, f), S(r, f)$ and so on, that can be found, for instance, in [4], [12]. We denote by $N_{k}(r,\frac{1}{(f-a)})$ the counting function for zeros of f-a with multiplicity less or equal to k, and by $\overline{N}_{k}(r,\frac{1}{(f-a)})$ the corresponding one for which multiplicity is not counted. Let $N_{(k)}\left(r,\frac{1}{(f-a)}\right)$ be the counting function for zeros of f-a with multiplicity at least kand $\overline{N}_{(k)}\left(r,\frac{1}{(f-a)}\right)$ the corresponding one for which multiplicity is not counted. Set

$$N_k\left(r,\frac{1}{f-a}\right) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}_{(2}\left(r,\frac{1}{f-a}\right) + \ldots + \overline{N}_{(k}\left(r,\frac{1}{f-a}\right).$$

 $2000\ Mathematics\ Subject\ Classification.\ Primary\ 30D35.$

Key words and phrases. q-shift, uniqueness, entire function, difference polynomial.

Let $N_E(r,a;f,g)(\overline{N}_E(r,a;f,g))$ be the counting function (reduced counting function) of all common zeros of f-a and g-a with the same multiplicities and $N_0(r,a;f,g)(\overline{N}_0(r,a;f,g))$ the counting function (reduced counting function) of all common zeros of f-a and g-a ignoring multiplicities. If

$$\overline{N}\left(r, \frac{1}{f-a}\right) + \overline{N}\left(r, \frac{1}{g-a}\right) - 2\overline{N}_E(r, a; f, g) = S(r, f) + S(r, g),$$

then we say that f and g share a "CM". On the other hand, if

$$\overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{g-a}\right) - 2\overline{N}_0(r,a;f,g) = S(r,f) + S(r,g),$$

then we say that f and g share a "IM".

We now explain in the following definition the notion of weakly weighted sharing which was introduced by Lin and Lin [8].

Definition 1 ([8]). Let f and g share a "IM" and k be a positive integer or ∞ . $\overline{N}_{k}^{E}(r,a;f,g)$ denotes the reduced counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g, and both of their multiplicities are not greater than k. $\overline{N}_{k}^{O}(r,a;f,g)$ denotes the reduced counting function of those a-points of f which are a-points of g, and both of their multiplicities are not less than k.

Definition 2 ([8]). For $a \in C \cup \{\infty\}$, if k is a positive integer or ∞ and

$$\begin{split} \overline{N}_{k)} \left(r, \frac{1}{f-a} \right) - \overline{N}_{k)}^E(r, a; f, g) &= S(r, f), \\ \overline{N}_{k)} \left(r, \frac{1}{g-a} \right) - \overline{N}_{k)}^E(r, a; f, g) &= S(r, g), \\ \overline{N}_{(k+1)} \left(r, \frac{1}{f-a} \right) - \overline{N}_{(k+1)}^O(r, a; f, g) &= S(r, f), \\ \overline{N}_{(k+1)} \left(r, \frac{1}{g-a} \right) - \overline{N}_{(k+1)}^O(r, a; f, g) &= S(r, g), \end{split}$$

or if k = 0 and

$$\overline{N}\left(r,\frac{1}{f-a}\right)-\overline{N}_0(r,a;f,g)=S(r,f),\overline{N}\left(r,\frac{1}{g-a}\right)-\overline{N}_0(r,a;f,g)=S(r,g),$$
 then we say f and g weakly share a with weight k . Here we write f,g share " (a,k) "

to mean that f, g weakly share a with weight k.

Now it is clear from Definition 2 that weakly weighted sharing is a scaling between IM and CM.

Recently, A. Banerjee and S. Mukherjee [1] introduced another sharing notion which is also a scaling between IM and CM but weaker than weakly weighted sharing.

Definition 3 ([1]). We denote by $\overline{N}(r, a; f \mid = p; g \mid = q)$ the reduced counting function of common a-points of f and g with multiplicities p and q, respectively.

Definition 4 ([1]). Let f, g share a "IM". Also let k be a positive integer or ∞ and $a \in C \cup \{\infty\}$. If

$$\sum_{p,q \le K} \overline{N}(r, a; f \mid = p; g \mid = q) = S(r),$$

then we say f and g share a with weight k in a relaxed manner. Here we write f and g share $(a, k)^*$ to mean that f and g share a with weight k in a relaxed manner.

W. K. Hayman proposed the following well-known conjecture in [5].

Hayman's conjecture. If an entire function f satisfies $f^n f' \neq 1$ for all positive integers $n \in \mathbb{N}$, then f is a constant.

It has been verified by Hayman himself in [6] for the case n > 1 and Clunie in [3] for the case n > 1, respectively.

It is well-known that if f and g share four distinct values CM, then f is Mobius transformation of g. In 2011, Liu and Cao [10], have obtained results on the uniqueness and value distribution of q-shift difference polynomials. Some of them are stated below.

Theorem A. [[10], Theorem 1.1] Let f(z) be a transcendental meromorphic (resp. entire) function with zero order, and let m, n be positive integers and a, q be non-zero complex constants. If $n \geq 6$ (resp. $n \geq 2$), then $f^n(z)(f^m(z) - a)f(qz + c) - \alpha(z)$

has infinitely many zeros, where $\alpha(z)$ is a non-zero small function with respect to f. In particular, if f(z) is a transcendental entire function and $\alpha(z)$ is a non-zero rational function, then m and n can be any positive integers.

Theorem B. [[10], Theorem 1.5] Let f(z) and g(z) be a transcendental entire functions with zero order. If $n \geq m+5$, and $f^n(z)(f^m(z)-a)f(qz+c)$ and $g^n(z)(g^m(z)-a)g(qz+c)$ share a non-zero polynomial p(z) CM, then $f(z) \equiv g(z)$.

In 2015, On the basis of Theorems A and B, Q. Zhao and J. Zhang [14] study the k-th derivative of q-shift difference polynomials and proved the following results.

Theorem C. Let f(z) be a transcendental meromorphic function with zero order, and let n, k be positive integers. If n > k + 5, then $(f^n(z)f(qz+c))^{(k)} - 1$ has infinitely many zeros.

Theorem D. Let f(z) be a transcendental entire function with zero order, and let n, k be positive integers, then $(f^n(z)f(qz+c))^{(k)}-1$ has infinitely many zeros.

Theorem E. Let f(z) and g(z) be transcendental entire functions with zero order, and let n, k be positive integer. If n > 2k + 5, and $(f^n(z)f(qz + c))^{(k)}$ and $(g^n(z)g(qz + c))^{(k)}$ share z CM, then f = tg for a constant t with $t^{n+1} = 1$.

Theorem F. Let f(z) and g(z) be transcendental entire functions with zero order, and let n, k be positive integer. If n > 2k + 5, and $(f^n(z)f(qz + c))^{(k)}$ and $(g^n(z)g(qz + c))^{(k)}$ share 1 CM, then f = tg for a constant t with $t^{n+1} = 1$.

When sharing a single value IM, and obtain the following theorems.

Theorem G. Let f(z) and g(z) be transcendental entire functions with zero order, and let n, k be positive integer. If n > 5k + 11, and $(f^n(z)f(qz + c))^{(k)}$ and $(g^n(z)g(qz + c))^{(k)}$ share a value z IM, then f = tg for a constant t with $t^{n+1} = 1$.

Theorem H. Let f(z) and g(z) be transcendental entire functions with zero order, and let n, k be positive integer. If n > 5k + 11, and $(f^n(z)f(qz+c))^{(k)}$ and $(g^n(z)g(qz+c))^{(k)}$ share 1 IM, then f = tg for a constant t with $t^{n+1} = 1$.

In this paper by introducing the small function $\alpha(z)$, we prove the following results.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \geq 4k + m + \sigma + 5$ is an integer. $\left[f^n(z)(f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j} \right]^{(k)} \text{ and } \left[g^n(z)(g^m(z) - 1) \prod_{j=1}^d g(z + c_j)^{v_j} \right]^{(k)} \text{ share } "(\alpha(z), 2)", \text{ then } f(z) = g(z).$

Theorem 2. Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \geq 6k + 3m + 2\sigma + 6$ is an integer. If $\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}$ and $\left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$ share $(\alpha(z),2)^*$, then f(z)=g(z).

without the notions of weakly weighted sharing and relaxed weighted sharing we prove the following theorem.

Theorem 3. Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \geq 10k + 5m + +5\sigma + 7$ is an integer. If \overline{E}_{2} $\left(\alpha(z), \left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]\right) = \overline{E}_{2}$ $\left(\alpha(z), \left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]\right)$ then $f(z) \equiv g(z)$.

2. Lemmas

In this section, we present some lemmas which play an important role in the proof of the main results. We will denote by H the following function;

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right)$$

Lemma 1 ([1]). Let H be defined as above. If F and G share "(1,2)" and $H \not\equiv 0$, then

$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G)$$
$$-\sum_{n=3}^{\infty} \overline{N}_{(p}\left(r,\frac{G}{G'}\right) + S(r,F) + S(r,G),$$

and the same inequality holds for T(r, G).

Lemma 2 ([1]). Let H be defined as above. If F and G share $(1,2)^*$ and $H \not\equiv 0$, then

$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}(r,F) - m\left(r,\frac{1}{G-1}\right) + S(r,F) + S(r,G),$$

and the same inequality holds for T(r, G).

Lemma 3 ([13]). Let H be defined as above. If $H \equiv 0$ and

$$\limsup_{r\to\infty}\frac{\overline{N}\left(r,\frac{1}{F}\right)+\overline{N}(r,F)+\overline{N}\left(r,\frac{1}{G}\right)+\overline{N}(r,G)}{T(r)}<1,\ r\in I,$$

where $T(r) = \max\{T(r, F), T(r, G)\}$ and I is a set with infinite linear measure, then $F \equiv G$ or $FG \equiv 1$.

Lemma 4 ([2]). Let f(z) be a meromorphic function in the complex plane of finite order $\sigma(f)$, and let η be a fixed non-zero complex number. Then for each $\epsilon > 0$, one has

$$T(r, f(z+\eta)) = T(r, f(z)) + O(r^{\sigma(f)-1+\epsilon}) + O(\log r)$$

Lemma 5 ([11]). Let f(z) be an entire function of finite order $\sigma(f)$, c a fixed non-zero complex number, and

$$P(z) = a_n f^n(z) + a_{n-1} f^{n-1}(z) + \dots + a_1 f(z) + a_0$$

where $a_i(j = 0, 1, ..., n)$ are constants. If F(z) = P(z)f(z + c), then

$$T(r, F) = (n+1)T(r, f) + O(r^{\sigma(f)-1+\epsilon}) + O(\log r).$$

Lemma 6 ([9]). Let F and G be two nonconstant entire functions, and $p \geq 2$ an integer. If $\overline{E}_{p)}(1,F) = \overline{E}_{p)}(1,G)$ and $H \not\equiv 0$, then

$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + 2\overline{N}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{G}) + S(r,F) + S(r,G).$$

Lemma 7 ([7]). Let f(z) be a nonconstant meromorphic function, and let s, k be two positive integers. Then

$$N_s(r, \frac{1}{f^{(k)}}) \le T(r, f^{(k)}) - T(r, f) + N_{(s+k)}(r, \frac{1}{f}) + S(r, f),$$

$$N_s(r, \frac{1}{f^{(k)}}) \le k\overline{N}(r, f) + N_{s+k}(r, \frac{1}{f}) + S(r, f).$$

Clearly, $\overline{N}(r, \frac{1}{f(k)}) = N_1(r, \frac{1}{f(k)}).$

Lemma 8. Let f and g be two entire functions, suppose that $c_j (j=1,2,\cdots,d)$ are nonzero complex constants, $v_j (j=1,2,\cdots,d)$ are non-negative integers, $n,m\geq 1$ and $k(\geq 0)$ are integers and let $F=\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}$ and $G=\left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$. If there exists nonzero constants c_1 and c_2 such that $\overline{N}(r,c_1;F)=\overline{N}(r,0;G)$ and $\overline{N}(r,c_2;G)=\overline{N}(r,0;F)$, then $n\leq 2k+m+\sigma+2$.

Proof. We put $F_1 = f^n(z)(f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j}$ and $G_1 = g^n(z)(g^m(z) - 1) \prod_{j=1}^d g(z + c_j)^{v_j}$, by the second fundamental theorem of Nevanlinna, we have

(2.1)
$$T(r,F) \leq \overline{N}(r,0;F) + \overline{N}(r,c_1;F) + S(r,F)$$
$$\leq \overline{N}(r,0;F) + \overline{N}(r,0;G) + S(r,F)$$

Using equation (2.1), in Lemmas 2 and 4, we obtain

$$(n+m+\sigma)T(r,f) \leq T(r,F) - \overline{N}(r,0;F) + N_{k+1}(r,0;F_1) + S(r,f)$$

$$\leq \overline{N}(r,0;G) + N_{k+1}(r,0;F_1) + S(r,f)$$

$$\leq N_{k+1}(r,0;F_1) + N_{k+1}(r,0;G_1) + S(r,f) + S(r,g)$$

$$\leq (k+m+\sigma+1)(T(r,f) + T(r,g)) + S(r,f) + S(r,g).$$

Similarly,

$$(2.3) \quad (n+m+\sigma)T(r,g) \le (k+m+\sigma+1)(T(r,f)+T(r,g)) + S(r,f) + S(r,g).$$

Combining (2.2) and (2.3), we obtain

$$(n-2k-m-\sigma-2)(T(r,f)+T(r,g)) \le S(r,f)+S(r,g).$$

Which gives $n < 2k + m + \sigma + 2$.

This proves the lemma.

Lemma 9. Suppose that f and g are two transcendental entire function of finite order, Suppose that $c_j(j=1,2,\cdots,d)$ are nonzero complex constants, $v_j(j=1,2,\cdots,d)$ are non-negative integers, $n,m\geq 1$ and $k(\geq 0)$ are integers. If $n\geq m+5$ and $\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}=\left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}$ then f=tg where $t^m=1$.

3. Proof of Theorem 1

Let

$$F(z) = \frac{\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k)}}{\alpha(z)}, G(z) = \frac{\left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k)}}{\alpha(z)}$$

Then F(z) and G(z) share "(1,2)" except the zeros or poles of $\alpha(z)$. By Lemma 5, we have

(3.1)
$$T(r, F(z)) = T(r, f^n(f^m - 1) \prod_{j=1}^d f(z + c_j)^{v_j}) + k\overline{N}(r, f) + S(r, f),$$

(3.2)
$$T(r, G(z)) = T(r, g^n(g^m - 1) \prod_{i=1}^d g(z + c_j)^{v_j}) + k\overline{N}(r, \frac{1}{f}) + S(r, g).$$

Also from Lemma 7, we obtain

(3.3)

$$N_{2}\left(r, \frac{1}{F}\right) \leq N_{k+2}\left(r, \frac{1}{f^{n}(f^{m}-1)\prod_{j=1}^{d} f(z+c_{j})^{v_{j}}}\right) + S(r, f)$$

$$\leq (k+2)N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f^{m}-1}\right) + N\left(r, \frac{1}{\prod_{j=1}^{d} f(z+c_{j})^{v_{j}}}\right)$$

$$+ k\overline{N}(r, f) + S(r, f)$$

$$\leq (2k+m+\sigma+2)T(r, f) + S(r, f)$$

and

(3.4)
$$N_2\left(r, \frac{1}{G}\right) \le (2k + m + \sigma + 2)T(r, g) + S(r, g)$$

Suppose $H \not\equiv 0$, then by Lemma 1 and Lemma 4, we have

(3.5)

$$T(r,F) + T(r,G) \le 2N_2\left(r,\frac{1}{F}\right) + 2N_2\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g)$$

$$(n+m+1)[T(r,f) + T(r,g)] \le (4k+2m+2\sigma+4)[T(r,f) + T(r,g)] + S(r,f) + S(r,g)$$

$$(n-4k-m-2\sigma-3)[T(r,f) + T(r,g)] \le O(r^{\sigma(f)-1+\epsilon}) + O(r^{\sigma(g)-1+\epsilon}) + S(r,f) + S(r,g)$$

which contradicts with $n \ge 4k + m + 2\sigma + 3$. Thus we have $H \equiv 0$. Note that

$$\overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{G}\right) \le (2k + m + \sigma + 1)T(r, f) + (2k + m + \sigma + 1)T(r, g)$$

$$+ S(r, f) + S(r, g)$$

$$\le T(r).$$

where $T(r) = \max\{T(r, F), T(r, G)\}$. By Lemma 3, we deduce that either FG = 1 or F = G

Let FG = 1. Then,

$$\left[f^{n}(z)(f^{m}(z)-1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}\right]^{(k)}\cdot\left[g^{n}(z)(g^{m}(z)-1)\prod_{j=1}^{d}g(z+c_{j})^{v_{j}}\right]^{(k)}=\alpha^{2}$$

$$\left[f^{n}(z)(f(z)-1)(f^{m-1}(z)+f^{m-2}(z)+\cdots+1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}\right]^{(k)}\cdot\left[g^{n}(z)(g(z)-1)(g^{m-1}(z)+g^{m-2}(z)+\cdots+1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}\right]^{(k)}$$

It can be easily viewed from above that

$$N(r, 0; f) = S(r, f)$$
 and $N(r, 1; f) = S(r, f)$

Thus,

$$\delta(0, f) + \delta(1, f) + \delta(\infty, f) = 3,$$

Which is not possible. Therefore, we must have F = G, and then

$$\left[f^{n}(z)(f^{m}(z)-1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}\right]^{(k)} = \left[g^{n}(z)(g^{m}(z)-1)\prod_{j=1}^{d}g(z+c_{j})^{v_{j}}\right]^{(k)}$$

Integrating above, we get,

$$\left[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}\right]^{(k-1)} = \left[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}\right]^{(k-1)} + C_{k-1}$$

Where C_{k-1} is a constant. If $C_{k-1} \neq 0$, using Lemma 8, it follows that $n \leq 2k+m+\sigma$ a contradiction. Hence $C_{k-1} = 0$, repeating k times, we deduce that,

$$f^{n}(z)(f^{m}(z)-1)\prod_{j=1}^{d}f(z+c_{j})^{v_{j}}=g^{n}(z)(g^{m}(z)-1)\prod_{j=1}^{d}g(z+c_{j})^{v_{j}}$$

which by Lemma 9, gives f = tg where t is a constant satisfying $t^m = 1$. This proves Theorem 1.

4. Proof of Theorem 2

Let

$$F(z) = \frac{[f^n(z)(f^m(z) - 1) \prod_{j=1}^d f(z + c_j)^{v_j}]^{(k)}}{\alpha(z)}, G(z) = \frac{[g^n(z)(g^m(z) - 1) \prod_{j=1}^d g(z + c_j)^{v_j}]^{(k)}}{\alpha(z)}$$

Then F(z) and G(z) share $(1,2)^*$ except the zeros or poles of $\alpha(z)$. Obviously

(4.1)

$$2N_{2}\left(r, \frac{1}{F}\right) + 2N_{2}\left(r, \frac{1}{G}\right) + \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{G}\right) + S(r, F) + S(r, G)$$

$$< (6k + 3m + 2\sigma + 6)T(r, f) + (6k + 3m + 2\sigma + 6)T(r, g) + S(r, f) + S(r, g).$$

According to 4.1 and Lemma 2, we can prove Theorem 2 in a similar way as in Section 3.

5. Proof of Theorem 3

Let

$$F(z) = \frac{[f^n(z)(f^m(z)-1)\prod_{j=1}^d f(z+c_j)^{v_j}]^{(k)}}{\alpha(z)}, G(z) = \frac{[g^n(z)(g^m(z)-1)\prod_{j=1}^d g(z+c_j)^{v_j}]^{(k)}}{\alpha(z)}$$

Then $\overline{E}_{2)}(1,[f^n(f^m-1)\prod_{j=1}^d f(z+c_j)^{v_j}]^{(k)}) = \overline{E}_{2)}(1,[g^n(g^m-1)\prod_{j=1}^d g(z+c_j)^{v_j}]^{(k)})$ except the zeros or poles of $\alpha(z)$. Obviously

(5.1)

$$2N_2\left(r, \frac{1}{F}\right) + 2N_2\left(r, \frac{1}{G}\right) + 3\overline{N}\left(r, \frac{1}{F}\right) + 3\overline{N}\left(r, \frac{1}{G}\right) + S(r, F) + S(r, G)$$

$$\leq (10k + 5m + 5\sigma + 7)T(r, f) + (14k + 5m + 5\sigma + 7)T(r, g) + S(r, f) + S(r, g).$$

Using 5.1 and Lemma 6, we can prove Theorem 3 in a similar way as in Section 3.

References

- A. Banerjee and S. Mukherjee, Uniqueness of meromorphic functions concerning differential monomials sharing the same value, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 50(98) (2007), no. 3, 191–206.
- [2] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. **16** (2008), no. 1, 105–129.
- [3] J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392.
- [4] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [5] W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967.
- [6] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math.(2) 70 (1959), 9-42.
- [7] I. Lahiri, A. Sarkar, Uniqueness of a meromorphic function and its derivative, J. inequal. pure appl. Math., 5(1), 20, 2004.
- [8] S. Lin and W. Lin, Uniqueness of meromorphic functions concerning weakly weighted-sharing, Kodai Math. J. 29 (2006), no. 2, 269–280.
- [9] X. Lin and W. Lin, Uniqueness of entire functions sharing one value, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 3, 1062–1076.
- [10] K. Liu, X.-L. Liu and T.-B. Cao, Uniqueness and zeros of q-shift difference polynomials, Proc. Indian Acad. Sci. Math. Sci. 121 (2011), no. 3, 301–310.
- [11] G. Wang, D. Han and Z.-T. Wen, Uniqueness theorems on difference monomials of entire functions, Abstr. Appl. Anal. 2012, Art. ID 407351, 8 pp.

- [12] L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.
- [13] H.-X. Yi, Meromorphic functions that share one or two values, Complex Variables Theory Appl. 28 (1995), no. 1, 1–11.
- [14] Q. Zhao and J. Zhang: Zeros and shared one value of q-shift Difference polynomials, Journal of Contemporary Mathematical Analysis, 2015, vol. 50, No. 2, pp 63–69

HARINA P.WAGHAMORE

Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560 056, INDIA

E-mail address: harinapw@gmail.com

RAJESHWARI S.

Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560 056, INDIA

 $E\text{-}mail\ address: \verb|rajeshwaripreetham@gmail.com||$